Guide to Interworking with the Tuya MCU

Contents

1 Creating a Product on the Tuya Smart Platform and Downloading the MCU
DEVElOPMENT PACKAZE ... eiiitieiiieete ettt ettt et e st e st e e s bt e s sateesabeesnbeesbaeeaeean 2
PN o (] o Tole] l 2{to] [V 4 Te] o IO OO 6
2.1 ProtoCO! FramEWOTKcoiuiiiiiieeiee ettt ettt et e e sibe e sbe e sbeesbeeenaseeens 6
2.1 1 BaSiC PrOtOCOL...ciieieiiieeite ettt ettt ettt e enbeeens 7
2.1.2 FUNCLIONAI ProtOCO! .. .ciiiiiiiiiieiie ettt aee s 13
3 Migrating TUYA's IMCU SDKcccuuiiiiiiiieenieeeiieeriie et esieesteessateesateesteesbaessaeeesateesnseesnseessssens 15
3.1 PrECAUTIONS. ..ceiiiieiteeee et e e e et e e e s e s r e e e e e e e s nnrraeees 15
3.2 [2(o=To [4 F-1 o S TP PP 15
33 [goTolTe (U T PSPPI 15
3.3.1 Compiling the MCU Basic Program and Migrating the SDK Filec.cccveun.e. 15
3.3.2 Verifying the Macro Definition in protocol.hccccovveiviiiiiiiiriieeee 16
3.3.3 Migrating the protocol.c File and Invoking FUNCLIONSccccoeveeeeiiiieeeeiiieeens 18
3.3.4 Processing DP Data Report and Delivery FUNCLIONSccccveeeiivieeeniiee e, 19
3.3.5 Optimizing Network Configuration and Indicator Functionsc.cccceeeevveeenns 20
3.3.6 Optimizing the Product Testing FUNCLIONcccuviieiiiieieeiieee e 22
Optional Function: MCU ONnling UPgrade........cueeeecuieeeeiiieeeeeieeeeecieeeeectreeeesveeeeenvaee e 23
4 Serial Port SIMulation TOOIS.......coiiirieriiieieseertert ettt sttt 24
4.1 Tuya Cloud Serial Port Debugging AsSiStantccceeeviieeieiiiiee e 24
4.2 Tuya MCU Simulation Debugging ASSIStANT.........cccveeeiiieeeeiiiee e ecreeeeeireeeeevaee e 25
5 SDK Function Architecture BreakdoWnoceeiieriiniiniiiniinieeeseeseesee e 26

1 Creating a Product on the Tuya Smart Platform and Downloading

the MCU Development Package

This section describes how to create a heater product on the Tuya Smart platform as an individual
developer.

1) Visit https://iot.tuya.com and register a developer account. Then, log in to the platform
using the account.

Tuya Smart Intelligent loT Platform o
It Al o ‘ Log in with Tuya Account
elease the power of Al, start loT now!

Forgot Password?

2) Click Create on the Product page. Choose Home Appliances Il and select Heater.

Product Data Operation Document Support Center Value-added Services Purchase & 157

o ELEHERER, 48R
g Submit your question. o Exclusive service team

Easy Access to Get Your Smart Product =

(B
||
L)

OEM App

- motil:

Create new product X

Electrical) — -
Smart Lighting) 1 I . . #

Home Appliances |

Air Purifier Heater Robot Vacuum Humidifier Fan Dehumidifier

Home Appliances |

-]
Kitchen »

Security & Sensor

Water Purifier Air Cooler Thermostat Curtains Electric Blanket Door / Window
Sport & Health

Others) T m .

Airer Air Conditioner

3) Select data points (DPs) based on product requirements. If there are custom functions, add
them as required. For details about custom product functions, see
https://docs.tuya.com/en/product/function.html.

Function Definition
Fay
-

Select common function
You can still add custorn functions after adding common functions

® Select al

& " Switch H @ & Set Temperature H & e Current Temperature ‘

@ = Mode H ® @ Gear

| @ & ECO Mode

| @ 4 Child Lock |

& » Shake

|0 & Anion H@ © Light ‘

@ & Countdown Timer H & © Remaining Time H] Fault Alarm |

[] Working Status ‘ ‘ [] Current Power

(] Week Program (freestyle) |

] Week Program (four-part form ‘ ‘] Week Program3 ‘

EiEF4

Add selected function

4) Select a favorite app control panel template and scan the QR code to verify the effect. More
panel templates are provided for enterprise accounts. To upgrade your account, contact
Tuya business personnel.

https://docs.tuya.com/en/product/function.html

Fixed template

Select An App Interface Design

Custom template

Use the selected design

5) Download an MCU development package with one click.

tuydice Product Data Operation Document Support Center Value-added Services Purchase 1519250
D d Smart Product: my heater
Sto v] & ®
Function Definition App Ul Design Hardware Debug Advanced
(2] ——

8 BAZTEER, 4B

. Submit your question. ° Exclusive service team
Get module and develop MCU program (for manufactures)
my heater For manufactures with ility, th
Module info

Selected module: TYWE1S Wi-Fi Module

ChipESP8266

i &
Size 1823 54 imm
6xGPIOS, 2xUARTS, 1xADC 400 Call

Module details >

Choose a development scheme Consult

1 eneral firmware scheme Customized firmware scheme

Use mo

ping REWVETCRWD NG Virtual Device Debugging Test

all

MCU Development -y MCU Verification -y Network Connection Test

Tuya Serial Debugging Assistant Tuya Smart APP
Eunction Point Debugging File Virtual Device Debugging Test

Download SDK automatically
MCU SDK generate and update

Product communication protocol
MCU SDK download

=]

@
)

Cooki

6) Check the downloaded package. The following figure shows the materials contained in an
MCU development package.

sourcePack | emo_20181015 7 readme.txt - iBE=E - [m] x
== XD RRE RO =EV EEH
FRBEREPEE S
- 1. HRIEF= R ThEEE EhApkR ISR BN
E=2 2. MCU SDK
3. MCU SDK{EEB8
4. FESBENEHRMTF (REERIRE)

. » DevelopResourcePack BlfE#Edemo_20181015)

mcu_sdk BliEsEdemo_20181015

[] Debugfile EXBEsEdemo_20181015json
2 i S ZsEE .
] protocol BlfEEdemo_20181015.pdf 5. VS HERIRIE

| readment 2 MGy SRR TR IBMCURSS, iR, EH R
, . . mES =5 HHTIE

E8 TuYaCloudSerialPortHelper EMEEs2demo_20181015.2ip FEE, OISR REMCURRRS:

3. MIEASEHN A ORI FRREMCUEREGREE. SSROESMTF

{ERJERIRISE I RIE S

4. BEVSEERERBENEEDFRERER, BiEEEEEdiR i

Appllis, (AppTE: WHEREFIEE "RIEEE") .

2 Protocol Resolution

Protocols are classified into basic and functional protocols. Basic protocols are independent of
products. They are common protocols of modules and include module initialization commands
and some extended functional commands. Functional protocols are DP data transmitting and
receiving commands that the platform automatically generates based on the definition of each
product DP.

2.1 Protocol Framework

The MCU interworks with the Wi-Fi module through a serial port and common firmware. Settings
of the communication parameters are as follows:

® Bits per second: 9600

® Data bits: 8

® Parity: None

® Stop bits: 1

® Flow control: None

The following table describes the data frame format.

Field Length (Byte) Description

Frame header 2 Fixed value of Ox55aa

Version 1 Used during upgrade and extension

Command word 1 Detailed frame type

Data length 2 Big endian

Data XK

Checksum 1 Reminder of the byte sum starting
from the frame header to 256

The following table describes command words.

Command Word Description

0x00 Heartbeat detection.

0x01 Query product information.

0x02 Query the working mode of the Wi-Fi module.

0x03 Report the network connection status of the device.
0x04 Reset the Wi-Fi module and switch the network

configuration mode.

0x05 Reset the Wi-Fi module and select a network

configuration mode.

0x06 Deliver DP commands.

0x07 Report DP status.

0x08 Query the device initialization status.
0x0a (Optional) Start OTA upgrade.

0x0b (Optional) Transmit the OTA upgrade package.

Ox1c (Optional) Obtain the local time.

0x0e Test the Wi-Fi function (product testing command).

2.1.1 Basic Protocol

Basic protocols are the same for each product and mandatory for the Wi-Fi module. Basic
protocols include heartbeat detection and query for product information, working mode of the
Wi-Fi module, and Wi-Fi status.

Command words 0x00 to 0x08 are basic commands of the Wi-Fi module. Command words Ox0a
to OxOe are basic functions of the Wi-Fi module, including the MCU OTA upgrade, local time
acquisition, and product testing.

To enable the Wi-Fi module to work properly, you need to initialize the module and configure the
network connection.

The following figure shows command words involved in the module initialization protocol and the

initialization process.

The Wi-Fi
module is reset
and powered on,

® Processing by the Wi-Fi module:
The Wi-Fi reset button and Wi-Fi indicator are

on the Wi-Fi module. ¢ 1

I
I
|
® Cooperative processing by the MCU : No packet received within 35
I
'

and Wi-Fi module: 4
The Wi-Fi reset button and Wi-Fi indicator are Sends a heartbeat

Lorltlle_MC.U,_ _______________ i packet.

Command word 0x00
\ The MCU returns true.
} v
\

\ Queries ProductKey and
\ Mcu software version.

Command word 0x01

)
\

\ The Mcu returns true.
\
\ *

Cooperative processing by i i
the MCU and Wi.Fi medule = Obtains the working mode. Command word 0x02

Processing by the Wi-Fi module

Command word 0x03 Reports the current
Wi-Fi status.

Delivers a data

Aty Command word 0x08
synchronization command.

Command word 0x06

Command delivery Serial port

y Delivers app data. 1
Sends a The Wi-Fi module is Themclsn

heartbeat packet initialized and working The MCU processes and s e ’uncgozzesses

at 10s intervals. properly. returns the status. 3
Uploads app data. {
rial The MCU
Data reporting ‘;o'r“ proactively
reports data.

Command word 0x07

After being powered on, the Wi-Fi module sends heartbeat packets continuously. After the MCU

responds, the preceding initialization process starts.

1. Heartbeat detection: After the MCU is powered on, it returns 0x00 for the first heartbeat
packet and 0x01 for the second and later heartbeat packets. After receiving 0x00, the Wi-Fi
module is automatically initialized for data synchronization. Later heartbeat packets are used
to determine whether the device is online and automatically connects to the network upon

disconnection.

Frame Header Version | Command Word Data Checksum
Sent by the 0x55aa 0x00 0x0000 Oxff
Heartbeat Wi-Fi module
detection Reparted by 0x55aa 0x03 0x0001 0x00 (first packet) or | Checksum
the MCU 0x01 (later packets)

For example, the Wi-Fi module sends 55 aa 00 00 00 00 ff, and the MCU returns 55 aa 03 00 00

01 00 03 for the first packet and 55 aa 03 00 00 01 01 04 for other packets.

2. Query product information. After receiving a heartbeat response, the Wi-Fi module sends a
command to query the product information. The MCU reports the product information,
including the PID, version, and mode. Note that characters, such as curly brackets ({}), colons

(:), and double quotation marks ("") also need to be included. For details about the format,

see the following table.

Sent by the
Wi-Fi 0x55aa O0x00 | Ox01 | OxD0DO 0x00
module
Querying Mode:
product 0: default network configuration
information | Reported by 0x0015 1: low power consumption
Ox55aa 0x03 | 0x01 i . i Checksum
the MCU (0x0010-0x0018) | 2: special network configuration
Format: {“p":“svizlfOdzs4rz85c”,
HVH.Hl O 0]’! Hl.nH.O}
:¥1.0.0%, :

For example, the Wi-Fi module sends 55 aa 00 01 00 00 00, and the MCU returns
PID:RN2FVAgXG6WTfAktU, as shown in the following figure. You need to convert your product ID
to an ASCII code and use the ASCII code to replace RN2FVAgXG6WfAktU.

Example: {"p":"RN2FVAgXG5WfAktU", "v":"1.0.0", "m":0}

"p" indicates the product ID, and the value is RN2FVAgXG5WfAktU. "v" indicates the MCU version,
and the value is 1.0.0. "m" indicates the network configuration mode, and the value is O (the value
0 indicates default network configuration, the value 1 indicates low power consumption, and the
value 2 indicates special network configuration).

55 | aa | 03 01 00 2a 7b 22 70 22 3a 22 52 de 32 46

Frame - > » . - » ‘ 3
Header ! I : R N 2 y

22 | 3a | 22 31 2¢ | 30 | 2 |30 |22 |2 |22 |6d |22 |3a |30 |7

Oc

Parity Bit

3. Query the working mode of the set Wi-Fi module. After receiving the product information,
the Wi-Fi module sends command word 0x02 to query the working mode of the set Wi-Fi
module.

The working mode of the Wi-Fi module instructs how to show the Wi-Fi status and how to reset

the Wi-Fi module.
a. Cooperative processing by the MCU and Wi-Fi module The Wi-Fi module notifies the MCU of
the current Wi-Fi status over a serial port. The MCU controls status of the Wi-Fi indicator.

Ml

|luyJHWV) 02

GND vCC
TOUT UITX
RESET UIRX
GND Vi

3.3V
13.3
GND GND - I 2 GND - 10K/5%
104 roi4 7 0.1uF/16V 10uF/6.3V bttt
S1 button

| Signal
level
iconversion

[z

o

|

(=N) o W) 1) B

I l
|

o | om fn

I

o1 o1z
UORX U0TX — —

s J T =
= 1o 100 GND GND p
GND TYWEIS

Cooperative processing by the MCU and Wi-Fi module

|

=3

|0

1l
|

b. Processing by the Wi-Fi module The GPIO pins of the Wi-Fi module change status of the
Wi-Fi indicator (LED indicator). The Wi-Fi module is reset based on the GPIO inputs.

In processing by the Wi-Fi module mode, the Wi-Fi module triggers a reset when it detects that

the GPIO input is at a low level for more than 5s. GPIO pins used by the Wi-Fi indicator and Wi-Fi

reset button are configured by using command word 0x02.

Ml
5V
TuyaHWV2.0.2 JV
it e | , vee
171 GND VCC — Signal
46| TOUT UITX —% level RXD
5 RESET UIRX r ; conversion TXD
T GND 3\”3 3 {3.3V
GND GND =l _L . GND
B vos vous |2 —[C' e
12 ‘ 7 0.1uF/16V 10uF/6.3V
1 101 'o12 3
1o UORX UOTX o R2 F — —
1/0S 100 {—1 3.3V— = e
ToKIs% GND GND

TYWEIS

10
3.3V +Sl button

1K/5%
/’/ =
Red light o
GND

Processing by the Wi-Fi module

If the MCU selects cooperative processing by the MCU and Wi-Fi module, it reports 0. If the MCU
selects processing by the Wi-Fi module, it reports the 1/O interfaces of the Wi-Fi indicator and
Wi-Fi reset button. If the MCU selects processing by the Wi-Fi module, the following steps 4 to 6

can be ignored.

Sent by the
Wi-Fi 0x55a3 Ox00 | Ox02 | Ox0000 0Ox01
module
Reported by
the MCU
(cooperative
processing 0x55aa 0Ox03 | Ox02 | Ox0000 Checksum
by the MCU
and Wi-Fi
module)

Querying the
working mode
of the set
Wi-Fi module

Repaorted by
the MCU
|processing | 0x53aa 0«03 | Ox02 | Ox0002
by the Wi-Fi
module)

The first and second bytes
indicate the GPIO pin SNs of the
Wi-Fi status indicator and Wi-Fi
reset button, respectively.

Checksum

For example, the Wi-Fi module sends 55 aa 00 02 00 00 01.

The MCU returns 55 aa 03 02 00 00 04 (cooperative processing by the MCU and Wi-Fi module) or

55 aa 03 02 00 02 05 00 Ob (processing by the Wi-Fi module). "05" and "00" indicate the I/O

interfaces 5 and 0 that are connected to the Wi-Fi indicator and Wi-Fi reset button, respectively.

4. Report the Wi-Fi status. When the Wi-Fi module detects that the MCU restarts or the Wi-Fi
status is changed, the Wi-Fi module proactively reports the Wi-Fi status to the MCU. Based
on the Wi-Fi status indicated by the command word 0x03, the MCU controls blinking of the
Wi-Fi indicator. The following table describes six states in the protocol V03.

Device Network Description Status Value | LED Indicator Status
Connection Status

State 1 Smart network configuration 0x00 The indicator blinks at
250 ms intervals.

State 2 AP network configuration 0x01 The indicator blinks at
1500 ms intervals.

State 3 The Wi-Fi is configured. However, | 0x02 The indicator is off.
the device fails to connect to the
router.

State 4 The Wi-Fi is configured, and the 0x03 The indicator is
device successfully connects to steady on.
the router.

State 5 The device connects to the router | 0x04 The indicator is
and cloud. steady on.

State 6 The Wi-Fi device is in low power 0x05 The indicator is off.

consumption mode.

Indicates the Wi-Fi status.
0x00: smart network
configuration, in which mode, the
indicator blinks quickly
0x01: AP network configuration,
in which mode, the indicator
Sent by

o blinks slowly
the Wi-Fi | Ox55aa Ox00 | 0x03 | Ox0001 Checksum
- 0x02: Wi-Fi configuration is
Reporting the | module

Wi-Fi status successful, but the device fails to

connect to the router. The
indicator is off.

0x04: The device connects to the
router and cloud. The indicator is
steady on.

Reported
by the 0x55aa 0x03 | 0x03 | OxD000 Checksum
MCU

For example, the Wi-Fi module sends the checksum of 55 aa 00 03 00 01 01 ("01" indicates AP

network configuration), and the MCU returns 55 aa 03 03 00 00 05.

5. Reset the Wi-Fi module.
Network configuration command: You can reset the Wi-Fi module to enable the device to
enter network configuration state. The network configuration modes include:

a. Smart network configuration, in which mode, the Wi-Fi indicator blinks quickly. This mode is
simple and convenient.

b. AP network configuration, in which mode, the Wi-Fi indicator blinks slowly. This mode is
stable and reliable.

We recommend that you use both modes. You can customize the triggering mechanism to control

quick or slow blinking of the Wi-Fi indicator.

When receiving command word 0x04 sent from the MCU, the Wi-Fi module changes the network

configuration mode. The default mode is smart network configuration, and the Wi-Fi module

switches between the smart and AP network configuration modes.

™ ' ™)
Smart network Reset AP network
configuration configuration
y, Reset . J
Reset N
™ d ™
Wi-Fi status (smart Wi-Fi status (AP
network configuration) network configuration)
-~ 0000 J
Sent by
0Ox55aa 0x03 | 0x04 | 0x0000 Checksum
the MCU
Resetting the | Reported
Wi-Fimodule | by the
. 0Ox55aa Ox00 | Ox04 | Ox0000 0x03
Wi-Fi
module

For example, the MCU sends 55 aa 03 04 00 00 06, and the Wi-Fi module returns 55 aa 00 04 00
00 03.
6. Reset the Wi-Fi module and select a network configuration mode. Based on the parameters

sent by the MCU, the Wi-Fi module selects the smart or AP network configuration mode.

Similar to command word 0x04, the command can be used for network configuration. It also

enables the Wi-Fi module to select a network configuration mode.

Reparted by
the MCU
{smart
0x55aa 0x03 | 0x05 | Ox0001 0x00 Checksum
network
Resetting the !)
configuration
Wi-Fi module
d selectin mode)
and se
& Sent by the
a network
S MCU (AP
configuration
d network Ox55aa 0x03 | Ox05 | Ox0001 0x01 Checksum
mode
configuration
mode)
Sent by the
0x55aa 0x00 | Ox05 | Ox0000 0x04
Wi-Fi module

For example, the MCU sends 55 aa 03 05 00 01 00 08 (indicating the smart network configuration
mode) or 55 aa 03 05 00 01 01 09 (indicating the AP network configuration mode), and the Wi-Fi
module returns 55 aa 00 05 00 00 04.

7. Query the MCU working status. The Wi-Fi module uses command word 0x08 to query the
status of all MCU DPs as the initial values that are displayed on the app. After receiving the
command word, the MCU reports data of all DPs one by one. The Wi-Fi module queries the
DP status in the following scenarios:

a. The Wi-Fi module is powered on for the first time and connects to the MCU through
heartbeat packets.

b. The Wi-Fi module detects that the MCU has restarted or gone offline and then online.

Sent by the
. o 0x55aa Ox00 | Ox08 | Ox0000 Checksum
Querying the | Wi-Fi module
MCU waorking Repaort data of all DPs as the
Reported by o)
status 0x55aa 0Ox03 | OxO7 | N initial values to be displayed on | Checksum
the MCU "
e app.

For example, the Wi-Fi module sends 55 aa 00 08 00 00 07, and the MCU returns the checksum
of 55 aa 03 07 N **** (DP 1), the checksum of 55 aa 03 07 N **** (DP 2), or the checksum of ...
(DP N).

8.

Test product functions. The product testing command is used to test the RF performance of
the Wi-Fi module during mass production of the product. We recommend that you invoke
the product testing command 5s after the Wi-Fi module is powered on and initialized. After
receiving the product testing command, the Wi-Fi module automatically searches for the
"tuya_mdev_test" WLAN network and returns the search result with the signal strength (0 to
100 with a step of 20).

Testing the
Wi-Fi function
(Mote: Scan
the specified
5SID of
"tuya_mde
v_test".)

Reported by
the MCU

Ox35aa

0x03

Ox0e

0x0000

Checksum

Sent by the
Wi-Fi module

0Ox55aa

0x00

Ox0e

0x0002

The data contains two bytes. If
Data[0] is 0x00, the test fails, If
Data[0] is 0x01, the test is
succassful. When Datal0] is
0x01, Data[1] indicates the
signal strength, and its value
range is from O to 100. A larger
value indicates a higher signal
strength, and the value 100
indicates the strangest signal
strength. When Data[0] is Ox00
and Data[1] is 0x00, the
specified 55ID is not scanned.
When Data[0] is 0x00 and
Data[1] is 0x01, the authorized
key is not burnt into the Wi-Fi
module.

Checksum

For example, the MCU sends the checksum of 55 aa 03 Oe 00 00, and the Wi-Fi module returns
55 aa 00 Oe 00 02 01 28 38, indicating that the product testing is successful and that the signal
strength is 40.

2.1.2

Functional protocols are used for delivering and reporting DP data. The command word for the

Functional Protocol

Wi-Fi module to deliver DP data is 0x06, and that for the MCU to report DP data is 0x07.

After receiving a data delivery command, the MCU performs corresponding logical control. When
the DP status is changed, the MCU reports the DP data and changes the DP status displayed on

the app. The Wi-Fi module filters out duplicated DP data that the MCU reports.

Example:

Frame .
: Command| Data Date Function N Verification
1D Function Cee?gg; Word Length dpID Type Length Function Command Method
Sent by R
the wi-ri| 0%2933 | g06 | 0X00 0 f4.0; Joxor [9X000 Checksum
) module | 0x00 x05 x01 of £+ 0x00
1 Switch = 7 ons0<01
eported | 0x55aa | 0x00 0 | 0x00 0 S
l;/lyctSe 0x03 0x07 <05 0x01 0x01 01 Checksum
Sent by 552z ; X
the wiki| 22933 (o065 [2X00 0 o090 Joxoz |9X000 Checksum
arget module | 0x00 x08 x04 ~
2 peratur . 0x1e-0x50
Reporte XHdaz) x
bythe | oo [0x07 [23900 Toxoz Joxoz |00 ° Checksum
MCU X 5 z
sentby | (0y55aa . | ox00 0 0x00 0
Remaining :Tr]\gd\ﬁl:én 0x00 0x06 <05 0x0b 0x04 01 1hour: 0x00 Checksum
11 countdown 2hour:0x01
time Reported | ()x55az . - 0x 0"
bythe | 0%2988 log7 [9X000 1500 Joxoa [9X00 O | 3hour:0x02 Checksum
McU 0x03 x05 x01
bit0:1
bitl:2
bit2:4
Reported sies bit3:8
Fault 0x55aa 0x00 0 0x00 0
g by the X X <05 it4:16 Check
13 Alarm | ¥ 0x03 0x07 <06 0x0d 0x05 <02 bHL_I.'].b ecksum
bit5:32
bit6:64
bit7:128
bit8:512
Sent by 66
the wi-ri| 9%2933 [406 | ox11 [ox00 | Checksum
Week module | 0x00 L
17 oAt 0x00-0xff
Prog Reported | (5542
by the 0‘_0.; 0x07 N 0Ox11 0x00 N Checksum
Mcu s
Sent by SRR AT
the Wi-Fi gtgg“" 0x06 | N 0x66 [0x03 |N Checksum
dul -
02 |3 — 0x00-0xff
Reported | 0x55aa : g
by the g 0x07 N\ 0x66 0x03 N Checksum
MCU 0x03

Note:

a. Value data has four bytes. If a value contains less than four bytes, 0 is supplemented before
the value.

For example, if the MCU sends the checksum of 55 aa 03 07 00 08 02 02 00 04 00 00 00 1e,
the target temperature is 30°C.

b. Alarm data can contain multiple alarms reported simultaneously. Each bit represents an
alarm. The value 1 indicates that the fault occurs, and the value 0 indicates that the fault
does not occur.

For example, if the MCU sends the checksum of 55 aa 03 07 00 06 0d 05 00 02 00 09, the
faults represented by bit 0 and bit 3 occur.

¢. The meaning and display of string data must be the same as that on the panel. Customized
string data needs to be negotiated with the panel developer.

d. Raw data is transparent and typically used for implementing complex functions. We do not

recommend that you use raw data yourself.

3

Migrating Tuya's MCU SDK

3.1 Precautions

The mcu_sdk package contains the MCU code that is automatically generated based on product

functions defined on the Tuya Smart platform. The communication and protocol resolution

architecture is prepared and can be directly added to the original MCU project to quickly develop

MCU programs.

The SDK package has the following requirements on MCU hardware resources:

® Flash memory: 4 KB
® RAM: tens of bytes (depending on the DP data length), or 260 KB or higher if the OTA
upgrade function is required
® The number of nested functions is 9.
Users without sufficient resources can implement protocol interworking without using the MCU
SDK.
Execution File Header File Description
)) Contain Wi-Fi-related functions. Customers can
mcu_api.c mcu_api.h .]
invoke the functions on demand.
Protocol files that contain data processing
protocol.c protocol.h functions. Users need to modify the two files based
on project requirements.
Contain detailed implementation of the serial port
system.c system.h

communication protocol.

wifi.h Contains Wi-Fi-related macro definitions.

3.2 Roadmap

Step 1: Compile the MCU basic program and migrate the SDK file.

Step 2: Verify the macro definition in protocol.h.

Step 3: Migrate the protocol.c file and invoke functions.

Step 4: Optimize the DP data report and delivery functions.

Step 5: Optimize the network configuration and indicator functions.

Step 6: Optimize the product testing function.

3.3 Procedure

3.3.1

Compiling the MCU Basic Program and Migrating the SDK File

Add the .c and .h files in the mcu_sdk folder and corresponding header file reference path to the

original project. Initialize MCU-related peripherals, including the serial port, external interrupt
(button), and timer (indicator blinking).

=-*§ Project: TY3.0TEST =

B TY3.0TEST meu_apic
1 Application/MDK-ARM protocol.c

=45 SDK system.c

[protocol.c LI meu_api.h
. | | protocol.h

1 meu_apic [systemdh

_1 systern.c [wifih

3.3.2 Verifying the Macro Definition in protocol.h

1. Verify the product information.

PRODUCT_KEY indicates the macro definition of the product ID (PID), which is the unique
identifier of a product. Ensure that the PID is the same as that displayed on the Tuya Smart
platform. If the PIDs are different, download the latest SDK package.

MCU_VER indicates the software version, which is 1.0.0 by default. If the MCU requires OTA
upgrade, you need to update the version number after the OTA upgrade.

CONFIG_MODE indicates the network configuration mode, and the typical value is DEFAULT,
indicating the default network configuration mode.

Smart Preduct: my heater

g @
Function Definition App Ul Design Hardware Debug
[3]
8 EEHERER, 483K .
- -

- Exclusive service feam

L

my heater

Standard Functions S=tting

DP1 Function Function ty,
) Identifier Data fype P Properties remark Operate
D points 8

1 Switch switch lssuea"d P Boolean Edit Delete

__PROTOCOL H_
= _ PROTOCOL_H_

= PRODUCT_KEY "svizlfOdzsdrzgSc"

83 #¥defin

54

95 | #define MCU_VER "1.0.0" (/B PRIESREE, BTucnESFHE, oo A SREFEED
B

87 FJCONFIG MODE DEFAULT, HEE=#t—

AE
CCNFIG MODE DEFAULT

2. Check whether the MCU firmware needs to be upgraded.
If OTA upgrade of MCU firmware is required, enable the firmware update macro, which is
disabled by default.

\.?I

MCOUEEEEZESFHE

MEEF BB SRS, EFEEE

MCUR] 18 Eﬁm,.x api.cl ‘LFF‘JE;JHLJ firm update query() HEF R SEcrBE S ESFIER
-------- WhR_II‘JL—“"""""'

EEE=2 Aﬂl’q:lzj?j"[;ﬁﬁ HEREEM I, A RE 256 F T

MEEFEETIEE, EO0BEFEESETR

//#define SUPPORT_MCU FIRM UPDATE [/ FF BucuE AR I EE (B R

3. Define the transmitting and receiving buffers.

Modify the buffer size based on the DP definition. The size of the serial port transmitting and
receiving buffers must be larger than the maximum DP data length. The default size is 24 bytes. If
MCU OTA upgrade is required, a 260-byte buffer is recommended. The receiving buffer size can

be reduced if the RAM has insufficient space.

3 E N EEE:
0 = 5 {#E FAvcuATRam A8, R EET Az

.. _.-'r
SUPPORT_MCU_FIRM UPDATE
- WIFI_UART QUEUE_LMT 16 7 AR BT FF AN, ,EMC:TE}‘]RJ,}QTFE, EIEEN
- WIFI_UART_RECV_BUF_LMT 128 et FopEiE A/ hEE, AR T2e
= WIFI_UART QUEUE_LMT 128 /1 SR BT RA T A, dmcuRTRaMAES, RTHR /S
= WIFI_UART_RECV_BUE_LMI 300 7/E #:T-'.’;'_i%#I:, ERER, LA Tze0
$define WIFIR UART SEND BUF LMT //RER Fop iR hEE, AR T2

4. (Mandatory) Define the working mode of the Wi-Fi module.

(1) If the MCU controls network configuration triggering and indication, that is, the Wi-Fi reset
button and Wi-Fi indicator are on the MCU side, enable cooperative processing by the Wi-Fi
module and MCU (common mode) and ensure that #define is commented (the line of code
starts with "//").

4 EERTEFR

EHgaE:
wifi FE R A es BB Evi s 88 b (FBWIFI CONTROL SELE MODEE)
FIEHSSE Y WF_STATE_XEYFINE_RESET_EEY

ucuB 4

wifi TRRAT Fwies BB Fucy b (RHIWIFI_CONTROL SELF MODEZ))
MLJEEEA: B frwisi BT 8 Fincu_api.cIX A Mimou_reser wifi () ST, 18 Amcu_get reser wifi flag() BEEEEfwiri ZEE
HiERAEEwiritE R imeu_api . cXHF A flmcu_set_wifi mode (WIFI_CONFIG E n—::le;@ﬁ,??r 1 Hncu_get_wifi_work s:a:e()@ﬁ,zﬁl BB ER

//#define WIFI_CONTRCL SELF_MODE

(2) If the Wi-Fi indicator and Wi-Fi reset button are on the Wi-Fi module, execute the following
statement to enable processing by the Wi-Fi module:
#ifdef WIFI_CONTROL_SELF_MODE

Then, add information about the GPIO pins connected to the Wi-Fi indicator and Wi-Fi reset

button, as shown in the following figure.

WIFI_CONTRCL_SELF_MODE /iwitfi B AR R IEpRSIT i e S RS/ LEpiE R T B R FEE
WIFI_CONTROL_SELF_MODE /ESRE AR

WE_STATE_KEY 14 /i ERTEER TR, EREXZ FericE HEE

WE_RESERT KEY o [rairifEREBEE. EREIFerroEHEE

5. Check whether the MCU needs time verification.
If the time verification function is required, enable the RTC check macro.

S MOUE TS BB L e re il ThEe
EEE'LE:-FF :l'lr?fﬂs. ;#EEPICtCCCl.Cj’:'LLF P—'H'rr.ca_write_rtctirr.egf_ﬁl_"lrﬁﬁ'
mocu Write rtbtlneﬂ;‘ﬂf'#errﬁ?,x“j’{@ﬁﬂiﬁflﬁ'ﬁ?#err
HuJE*:;lflEﬁIIE‘JEEFH EE1E Fmecua . get_system time () @%’la_ﬁ 7B ThEE

/f#define SUPPORT MCU RTC CHECK FIFF B R ThEE

Write mcu_write_rtctime in the Protocol.c file to implement the code. After the Wi-Fi module
successfully connects to the network, the MCU can invoke the mcu_get_system_time() function
to initiate time verification.

6. Check whether the Wi-Fi product testing function is enabled.

To ensure mass production efficiency and quality, we recommend that you enable the product
testing macro. For details about implementation of the product testing function, see section 3.3.6
"Optimizing the Product Testing Function."

EHCUB EEE L v f_I"""ﬂl =
jl:rn- TEIF :l'l-;._ Lﬂ,;_LFj_lT_,..“Errrﬁ‘n f_IJtFtbll“ }Zt J
HFprotocol. E-T—'n fi test “es.._tl-f_ﬁlzmt-’ ﬁ%’ ﬂ|1
'p.-_f__test_:es_._t HEE #e::ﬁa oy ,—L.-,\{l-:_ﬂls\,{,': T B&

#define WIFI_TEST ENABLE

3.3.3 Migrating the protocol.c File and Invoking Functions

1. Use #include "wifi.h" in the files (for example, the main.c file) that require Wi-Fi-related
files.

2. After MCU peripherals are initialized, invoke the wifi_protocol_init() function in the
mcu_api.c file.

3. Add the single-byte sending function of the MCU serial port to the uart_transmit_output
function in the protocol.c file and delete #error. The following figure shows an example.

] protocol.c

124 L

D25 [T A AR AR R AR AR AR AR AR R AR AR AR AR R AR R
126 ; art_transmit_output

127 EabE

128 (FE OEIFTEEE

128
130
A3 -
132 woid uwart_transmit_output (unsigned char value)

133 ¢

134 | //__gerror "EMucuE O EERFUEIEDE, FHIKET
135 IUARTB SendSyte (value); |

136 1/

137
138
139
140 -*/f
BEDIY: ')

-

i
|
i
if
[
b

4. Invoke the uart_receive_input function in the mcu_api.c file in the serial port receiving
interrupt service function, and use the received characters as parameter input. The

following figure shows an example.

caLy =y

213 woid USRRT3_IRQHandler (void)

214 04

215 f* USER CODE BE i

21¢ unsigned char Re

217

218 if ((USART3->SR&UART FLAG RXNE) != 0)
215 H {

220 Res=USART3->DR;

221 |.1art. receive input (Res); |
222 ¥

224 |}
By

5. Invoke the wifi_uart_service() function in the mcu_api.c file after the MCU enters the while
cycle.

The following shows an example of code structure in main.c.
include "wifi.h"

void main(void)

{
wifi_protocol_init();
while(1)
{

wifi_uart_service();

}

}

Note:

The MCU must directly invoke the wifi_uart_service() function in the mcu_api.c file in while.
After the program is successfully initialized, it is recommended that the serial port interrupt not
be disabled. If the serial port interrupt must be disabled, ensure that the interrupt is disabled for
only a short time to prevent serial port data loss. Do not invoke the report function in the
interrupt.

3.3.4 Processing DP Data Report and Delivery Functions

1. Reporting data of all DPs

After the Wi-Fi module restarts or the network is reconfigured, the Wi-Fi module proactively

delivers a status query command. The MCU needs to report the status of the device's DPs to the

Wi-Fi module for synchronization.

(1) Open protocol.c and locate the all_data_update(void) function.

(2) Enter initial values of all DPs to be reported into corresponding report functions. The values
will be displayed on the app control panel.

Note: Do not invoke the all_data_update() function manually. This function is automatically

invoked at a specific time.

_] protocol.c
157 L

th,q _.p_lc.t,—

£, LM areFinucE B Bl

mcu_dp enum update (PPID MODE,0); //

177 mcu_dp bool_update (DPID_ECO, 0)

178 mcu_dp_bool_update (DPID_CHILDLOCK,

17¢% mcu_dp raw_update (DPID PROGRAM, RAW‘.AffEI 54)
180 meu_dp value _update (DPID_FLOORTEMP, 20) ;

181 mcu_dp enum update (DPID TEMPSWITCH, 1); »
182 mcu_dp bool_update (DPID_FLOORTEMPFUNCTICN, O0)

2. Reporting data of a single DP

When the status of a DP is changed, the MCU proactively reports the new DP status to the Wi-Fi
module, and the DP status displayed on the app will be updated accordingly. The report data
format is mcu_dp_xxxx_updata(DPID_X,n). DPID_X indicates the DP whose status has changed.
Functions in all_data_update() can be independently invoked.

Example:
mcu_dp_bool_update(DPID_SWITCH,1); //Boolean data reporting
mcu_dp_value_update(DPID_TEMPER_SET,25); //Value data reporting
mcu_dp_string_update(DPID_DAY,"1234",4); //String data reporting

3. DP data delivery

Each deliverable DP has an independent data delivery processing function in the protocol.c file.
The function format is dp_download_xxx_handle(), and xxx indicates a deliverable DP. After the
function parses a DP, the MCU performs logical control in the corresponding position.

The following shows an example of receiving switch data.

: §FFtopID sw

: wval

244 static unsigned char dp download switch handle(const unsigned char value[], unsigned short length)
245 H{

248 il : HETDPEETY AsocL
247 unsigned char ret;

248 (R FF

249 unsigned char switchl;

250

251 switchl = mcu get_dp_ download bool (value,length);
252 if (switchl == 0)

253 {

254 s H RS
255 |}

256 else

257 H

{
258 (e oFE swiceni (- /=)

261 /B opEIEE NE kR

262 ret = mcu dp bool update (DPID SWITCH,switchl):
263 if(ret == SUCCESS)

264 return SUCCESS;

265 else

266 return ERRCR;

The MCU uses MCU_ON_switch1() and MCU_OFF_switch1() to turn on and off a switch,
respectively. When the device status is changed under non-app control, the MCU invokes
mcu_dp_bool_update(DPID_SWITCH_1,switch_1) to upload the real status of the switch.
Typically, the receiving processing function automatically invokes the function.

3.3.5 Optimizing Network Configuration and Indicator Functions

When protocol migration is successful, the network configuration command and indicator
function need to be optimized for network configuration. Skip this section if processing by the
Wi-Fi module is used.

In mode of cooperative processing by the Wi-Fi module and MCU, the MCU can select the
network configuration triggering and indication modes based on actual requirements. Typically,
network configuration is triggered by the Wi-Fi reset button and indicated by quick or slow
blinking of the Wi-Fi indicator.

We recommend that you enable both network configuration modes for your product.

Smart network configuration mode: The operation is simple and convenient, and the Wi-Fi
indicator blinks quickly.

AP network configuration mode: Network configuration is reliable, and the Wi-Fi indicator blinks
slowly.

1. Network configuration command

The network configuration command can be implemented by the mcu_reset wifi() and
mcu_set_wifi_mode() functions. Typically, these two functions are invoked in the button
processing function after the button is pressed for network configuration.

After mcu_reset_wifi() is invoked, the Wi-Fi module is reset and the previous network
configuration information is cleared. The function invoking also triggers a switchover between

the AP and smart network configuration modes.

Reset
(Smart network ap network

configuration configuration
Reset

Reset ReSet

Wi-Fi status (smart Wi-Fi status (ap
network configuration) network configuration)

After mcu_set_wifi_mode() with parameter SMART_CONFIG or AP_CONFIG is invoked, the
network configuration information is cleared, and smart or AP network configuration mode is
used. This function has the same function as the mcu_reset_wifi() function. You can select one as
needed.

2. Network configuration indication

Typically, the mcu_get_wifi_work_state() function is invoked at while(1) to return the Wi-Fi status.

Then, you write the indicator blinking mode in based on the Wi-Fi status.

Device Network Description Status Value | LED Indicator Status

Connection Status

State 1 Smart network configuration 0x00 The indicator blinks at
250 ms intervals.

State 2 AP network configuration 0x01 The indicator blinks at
1500 ms intervals.

State 3 The Wi-Fi is configured. However, | 0x02 The indicator is off.
the device fails to connect to the
router.

State 4 The Wi-Fi is configured, and the 0x03 The indicator is
device successfully connects to steady on.
the router.

State 5 The device connects to the router | 0x04 The indicator is

and cloud. steady on.

State 6 The Wi-Fi device is in low power 0x05 The indicator is off.
consumption mode.

Invoke the mcu_get wifi_work_state() function to obtain the Wi-Fi status. The function
architecture is as follows:
void main(void)

while(1)
{

switch(mcu_get_wifi_work_state())
{
case SMART_CONFIG_STATE:
//Smart network configuration mode, and the Wi-Fi indicator blinks quickly.
You need to enter the Wi-Fi indicator status control code.
break;
case AP_STATE:
//AP network configuration mode, and the Wi-Fi indicator blinks slowly. You
need to enter the Wi-Fi indicator status control code.
break;
case WIFI_NOT_CONNECTED:
//Wi-Fi configuration is completed, and the device is connecting to the
router. The Wi-Fi indicator is steady off.
break;
case WIFI_CONNECTED:
//The device successfully connects to the router, and the Wi-Fi indicator is

steady on.
break;
case WIFI_CONN_CLOUD:
//The device successfully connects to the cloud, and the Wi-Fi indicator is
steady on.
default:break;
}
}
}

3.3.6 Optimizing the Product Testing Function

1. The MCU needs to support the Wi-Fi testing function. Open protocol.h and define the

following macro:
#define WIFI_TEST_ENABLE //Enable the Wi-Fi testing function.
2. The MCU invokes the mcu_start_wifitest() function from the mcu_api.c file when Wi-Fi
testing is required.
3. Invoke the wifi_test_result function from the protocol.c file to view the test result.
We recommend that you invoke the product testing command 5s after the Wi-Fi module is
powered on and initialized. Triggering conditions are user-defined. After the product testing
function is enabled, the module automatically searches for the "tuya_mdev_test" WLAN network
and returns the signal strength. The wireless hotspot name needs to be changed to
"tuya_mdev_test". During the test, you can change the hotspot name on your mobile phone.

Optional Function: MCU Online Upgrade

To support MCU online upgrade, open the protocol.h file, define the following macros:

#define SUPPORT_MCU_FIRM_UPDATE //Enable the MCU firmware upgrade function,
which is disabled by default.

#define MCU_VER "1.0.0"

//Set your software version, which is used during MCU firmware upgrade. The version number
needs to be modified after an MCU upgrade.

If the data packet is large, adjust the buffer size based on actual requirements as follows:
WIFI_UART_RECV_BUF_LMT 300 //Firmware upgrade buffer size, which must
be greater than 260 bytes

The corresponding upgrade function is in protocol.c.

] protocol.c

560 unsigned char mcu firm update_handle (const unsigned char value[],unsigned long position,unsigned short length)

561 H{ -
562I $error "iE BT ERMcUE HFAEMEE, EREERIERZT

575 -“Fendif

The MCU can invoke the mcu_firm_update_query() function from the mcu_api.c file to obtain
the MCU firmware upgrade information.

Note: The upgrade is initiated by the mobile phone. Click Upgrade to start. When debugging, you
can use the Tuya serial port debugging assistant to start the upgrade.

4 Serial Port Simulation Tools

Tuya provides two simulation assistants to help you improve the interworking efficiency,
understand the protocol format, and verify data. One assistant simulates the Wi-Fi module, and
the other simulates the MCU. Using both assistants can effectively improve the development
efficiency. For details, visit https://docs.tuya.com/cn/mcu/debug assistant.html.

4.1 Tuya Cloud Serial Port Debugging Assistant

The Tuya cloud serial port debugging assistant simulates data transmitting and receiving of the
Wi-Fi module. After connecting the assistant to the MCU, you can check whether MCU data
sending meets requirements of the Tuya communication protocol and whether migration is
successful.

Note: The Tuya cloud serial port debugging assistant can only verify the sending and receiving
protocol formats and does not support network connection.

USB-to-TTL
tool
Start the Tuya cloud T =
serial port debugging
assistant and load the - - sleEles
JSON file. <

Use method:

1. Use the USB-to-TTL tool to connect the serial port on the MCU to the serial port on a
computer.
Double-click the .exe file of the Tuya cloud serial port debugging assistant.
Click Browse, import the JSON file in the material package, and click Start.

https://docs.tuya.com/cn/mcu/debug_assistant.html.

srEE0EREF21.2 - X

File Help
LRI R —
55 aa 00 00 00 00 £f Schemafi 12 (ES A FETHARMERTF)
}%lﬁ@dﬁﬁ-ﬂ |C \Users\C]’E[\]Jesktop\De\relopResourcePac]{_%E?%A| S
59 a2 03 00 00 01 00 03
E N G A e B EESS
TAEREE-RERR: ® wUSHEHESIHE
56 22 00 01 00 00 00 O e
hEl R _
55 a2 030100 2a b 22 70 22 32 22 43 51 42 54 56 77 46 70 04 e o
31 54 63 62 4a 75 30 22 2c 22 76 22 32 22 31 Ze 30 Ze 30 22 Zc BOE: COM4 -~ G600 FiHEO JI :i)},[
22 6d 22 32 30 Td 2

Product Key: COBETVwEwT1TehIull

MCU Versiom: 1.0.0 0 s
KT BART
S T{EER SR pm——
B8 az 00 02 Q0 00 01
ENR R T R E B IR E)
88 az 03 02 00 00 04 3 R e v
R TIESS: USEREIE amE DHEERE. .
=M
B TSR Piam
G5 az 00 03 00 01 00 03 WUHE
P BfH Bits
B 0303000005 v OAEMHE WES:

: . O AEHHE .
{RAF B

4.2 Tuya MCU Simulation Debugging Assistant

The Tuya MCU simulation debugging assistant simulates data sending and receiving of the MCU.
After building a minimum system of the Wi-Fi module, connect the Wi-Fi module to the Tuya
MCU simulation assistant to achieve the following functions:

1. Check whether the Wi-Fi module is working properly.

2. Before the MCU is developed, debug app panel display.

3. Refer to the simulation assistant data for how to send or return data to the Wi-Fi module.

USB-to-TTL
tool

Start the Tuya MCU L
simulation debugging Wi-Fi module
assistant and load the

JSON file. M

BEMCUSEIRREIE0.2

Help

R HiE R
55 aa 00 00 00 00 £f

L HGE O T
55 =a 03 00 00 01 00 03

{E R
55 =a 00 01 00 00 00

22 6d 22 3a 30 Td {fe

E R
55 aa 00 02 00 00 01

55 aa 03 02 00 00 04

1 R
55 aa 00 03 00 01 00 03

REVIFL PR OEE
55 aa 03 03 00 00 05

I HiiER

55 aa 00 08 00 00 OF

I EIR- R R T

55 aa 03 07 00 05 01 0L 00 01 01 12
S R IR TRRIETY

kRS B ER (PRO_KEY tevizlfOdzedrzBSe MCU_ver:1.0.0)TX:
55 2z 03 01 00 2a Thb 22 T 22 32 22 T3 76 69 Ta Bc 66 30 64 Ta
T3 34 T2 Ta 38 35 63 22 2c 22 7H 22 3a 22 31 2e 30 Ze 30 22 2c

CIRMCUIGTE it i1 R T R8T (U SHERE S 098) T

{17

e
* [schensitiz (A FE T HRES AT
[C: Wsers\CHT\Desk top\HSGHE_FUESE deno\Devel opResour | s
h :
T {EEs e e ~
® wUEREA g @5 #nI [| SRR 100

O fEthEE

O R

20 | sems coo

I
® ik
WA
FOE: coms | seno

O

O 58

A

=if&0

i o

ESIEETHE
w =

all N
tenp temp
houmi di by mZ5
preszure
realFeel
uvi
windL
agi

pmZE

s0Z

mid

o3

noZ

selected

oo v

5 SDK Function Architecture Breakdown

SDK program structure

V1.0.0

()
| wifi_protocol_init() Initialization

—— queue_inout=wifi_queue_buf; Initializing the queue pointer

=]

| wifi_uart_service () Processing serial data

O wifi_uart_rx_buf[rx_in ++] = Queue_Read_Byte(); Obtaining queue data

5 Queue_Read Byte () Reading a single byte in a queue

N
D

I
)

) data_handle () Processing data

© switch (emd_type) Judgment command word

g

D heat_beat_check () Heartbeat detection

H® product_info_update () Praduct information

uart_receive_input () Receiving serial data

L *queue in ++ = valug; Storing data to the queue
" " buffer

HB data_point_handle ()

L@ sll_data_update ()

@ get_meu_wifi_ mode () Querying working mode of the Wi-Fi module

Delivering a DP data processing command

Reporting the status of all DPs

